FP2級 2025年5月 実技(金財:生保)問1

【この問題にはが用意されています。読んでから回答してください。】

問1

Aさんが、原則として65歳から受給することができる老齢基礎年金および老齢厚生年金の年金額(2024年度価額)を計算した次の〈計算の手順〉の空欄①~④に入る最も適切な数値を答えなさい。計算にあたっては、《設例》の〈Aさんとその家族に関する資料〉および下記の〈資料〉に基づくこと。なお、問題の性質上、明らかにできない部分は「□□□」で示してある。

〈計算の手順〉
  1. 老齢基礎年金の年金額(円未満四捨五入)
     ()円
  2. 老齢厚生年金の年金額
    1. 報酬比例部分の額(円未満四捨五入)
      )円
    2. 経過的加算額(円未満四捨五入)
      )円
    3. 基本年金額(上記「(1)+(2)」の額)
      □□□円
    4. 加給年金額(要件を満たしている場合のみ加算すること)
    5. 老齢厚生年金の年金額
      )円
01.png/image-size:580×408

正解 

① 759,900(円)
② 1,036,724(円)
③ 447(円)
④ 1,037,171(円)

分野

科目:A.ライフプランニングと資金計画
細目:5.公的年金

解説

〔①について〕
<資料>の老齢基礎年金の計算式を使います。原則として、20歳から60歳になるまでの40年間(480月)の全期間保険料を納めれば、65歳から満額の老齢基礎年金を受給できることになります。

Aさんは20~22歳の時に33月の未加入期間がありますが、免除の申請も後納もしていないため、保険料納付済月数への算入はありません。その後、厚生年金に加入して60歳までもれなく第2号被保険者となっているので、全期間(480月)から未加入期間33月を減じた「480月-33月=447月」がAさんの保険料納付済月数となります。

 816,000円×447月480月=759,900円

よって、正解は759,900(円)です。

〔②について〕
<資料>の老齢厚生年金の計算式に従って計算します。

[ⓐ2003年3月以前の期間分]
 250,000円×7.1251,000×96月=171,000円
[ⓑ2003年4月以後の期間分]
 450,000円×5.4811,000×351月=865,723.95円
[ⓐ+ⓑ]
 171,000円+865,723.95円=1,036,723.95円
(円未満四捨五入)1,036,724円

よって、正解は1,036,724(円)です。

〔③について〕
65歳以後の老齢厚生年金には定額部分と老齢基礎年金相当額との差額である経過的加算額が加算されます。
被保険者期間の月数は「144月+303月=447月」、20歳以上60歳未満の被保険者期間の月数も447月なので、計算式に当てはめると、

 1,701円×447月-816,000円×447月480月
=760,347円-759,900円=447円

よって、正解は447(円)です。

〔④について〕
加給年金は、厚生年金保険の被保険者期間が20年以上ある人が、原則65歳到達時において生計を維持している下記の配偶者または子がいる場合に、老齢厚生年金に一定額が加算される制度です。
  • 65歳未満の配偶者
  • 18歳到達年度の末日までの間の子
    または障害等級1級・2級の状態にある20歳未満の子
妻BさんはAさんより年上であり、Aさんが65歳になったとき妻Bさんは既に65歳以上になっているので、加給年金額の加算はありません。

Aさんが受給できる老齢厚生年金の額は、報酬比例部分の額と経過的加算額を合計した金額です。

 1,036,724円+447円=1,037,171円

よって、正解は1,037,171(円)です。